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Construction of sub-Poissonian radiation fields? 
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Abstract. Two classes of states showing sub-Poissonian photon statistics are constructed by 
appropriate mixtures of n-photon states. These mixtures are possibly relevant for anti- 
bunching. 

It is well known that coherent and incoherent radiation can be distinguished by their 
statistical properties, Coherent fields are characterised by Poissonian statistics, 
whereas chaotic fields show geometric photon distribution (Arecchi 1969, Pike 1969). 
For such distributions the second factorial moment obeys 

( U + U ( U + U  - 1)>- (a+a>220  (1) 

where equality corresponds to the Poissonian case, a+ and a denote the single-mode 
amplitude operators, and the angular brackets denote statistical averages. In this letter 
we look for states which obey 

( U + U ( U + U  -1)>-(a+a>2<0. (2) 
These states may be called 'sub-Poissonian'. States with sub-Poissonian fluctuations (2) 
are involved in several different phenomena: 

(a) Antibunching occurring in degenerate parametric amplification (Stoler 1974, 
MiSta and Perifia 1977), two-photon absorption (Simaan and Loudon 1975, Hildred 
and Hall 1978), and the resonant Stark effect (Carmichael and Walls 1976, Carmichael 
et a1 1978 and references therein). 

( b )  Superradiant emission of two-level atoms excited by a coherent pulse (Bonifacio 
et a1 1971). 

( c )  Moreover, such low-noise fields could be relevant as a source for optical 
communication, since the capacity of any information channel is known to be limited by 
noise (Shannon 1948). 

The purpose of this letter is to construct radiative states satisfying condition (2) 
without considering specific physical models. To this end we rewrite (2) in the form 

[ (u+u(u+u - ~ ) ) - ( U ' U ) ~ ] / ( U ' U ) * =  -A, A>O (3) 
where the positive constant A measures the relative deviation from the Poissonian 
case. We express condition (3) in terms of two standard generating functions, namely 

I Presented at the Optics '78 Conference held at the University of Bath, 20-23 September 1978. 
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that of the factorial moments, 
m 

Ql(x)= 1 (-x)’((a’)”a”)/v! 
u = o  

and that of the cumulants, 

In terms of Q2(x), however, relation (3) takes the form 

Since equations (6) and (7) only involve first and second moments of the field, subsidiary 
conditions have to be introduced in order to define the state. This may be achieved by 
extending equations (6) and (7) to the interval 0 S x 4 1.  This extension imposes 
conditions on the higher factorial moments and cumulants, respectively. In this way, we 
obtain two differential equations defining two classes of sub-Poissonian states. The 
definitions (4) and (5) imply 

Qi(0) = 1, W O )  = 0 (8) 

dQt/dxl,=o=dQz/dxl,=o= -(a’a)=-n (9) 

(normalization) and 

where n denotes the average field intensity. We use the relations (8) and (9) as initial 
conditions for the differential equations. 

We first discuss the solution of the differential equation obtained from equation (7), 
which reads 

(10) 

The logarithmic function occurring in (10) is defined in the interval 0 s x s 1 only if we 
require nA 4 1. Thus very large relative deviations from Poissonian statistics are 
possible only for weak intensities. The factorial moments of the state defined by Q2(x) 
are easily derived from equations (4), (5) and (lo), and read 

Q2(x) = A-’ In (1  - nAx), 0 4 x  s 1. 

( (~ ‘ )”~”>=(nA)’ l? ( l  +A- ’ ) / r ( l -  v+A-’) (11) 
with v = 0, 1 ,2 , .  . . . We notice that the fluctuations are sub-Poissonian for any constant 
A obeying OCA d n-’. The case A = n-l corresponds to the pure n-photon state. In 
the limit A + 0 the moments of the coherent state are reproduced. Thus we have shown 
that mixed states with sub-Poissonian statistics exist. 

We now discuss the solution of the differential equation obtained from condition (6), 
which reads 

(12) 

Again we have to require nA < 1. The corresponding factorial moments are given by 

((U’)’U’)=(U- l ) !nv( l  -A)”-’,  u s l .  (13) 

Ql(x)  = (A - l)-’ In [(l - A ) n x  + l]+ 1, O s x s l .  
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Sub-Poissonian fluctuations are again obtained for 0 < A  S n-’. In contrast to ( l l ) ,  we 
notice that now also the case A = n-l corresponds to a mixed sub-Poissonian state. In 
the limit A + 0 we now obtain a new kind of state, whose second moment obeys 

(14) 

(15) 

+ 2  2 ( ( a  ) a > = ( a + a ) * = n 2 .  

( (a  +) ”) = (v - 1 ) ! n ” 

Thus the second moment of this state factorises, whereas the higher moments 

apparently do not. This particular state may be called ‘sub-coherent’, since its statistical 
behaviour is intermediate between the chaotic and the coherent state; the sub-coherent 
state exhibits coherence of exactly the second order. It is of some theoretical interest as 
an implementation of Glauber’s (1969) definition of nth-order coherence. To the Lest 
of our knowledge, states exhibiting some exact order of coherence between 1 and 00 

have not been constructed hitherto. However, the state characterised by (15) is perhaps 
not of much practical interest since the average intensity has to be too small, namely 
n s l .  

We remark that the above two classes of sub-Poissonian mixed states are con- 
structed under special restrictions imposed on the higher moments More general 
construction schemes, such as maximisation of the entropy or similar functions, do not 
seem to lead to tangible results. 
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